Nuprl Lemma : quadratic-formula-simple

a,b,c:ℝ.
  ((r0 < a)
   (c < r0)
   (∀x:ℝ(((x quadratic1(a;b;c)) ∨ (x quadratic2(a;b;c)))  (((a x^2) (b x) c) r0))))


Proof




Definitions occuring in Statement :  quadratic2: quadratic2(a;b;c) quadratic1: quadratic1(a;b;c) rless: x < y rnexp: x^k1 req: y rmul: b radd: b int-to-real: r(n) real: all: x:A. B[x] implies:  Q or: P ∨ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q rneq: x ≠ y or: P ∨ Q uall: [x:A]. B[x] prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True uimplies: supposing a uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 top: Top false: False not: ¬A rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y guard: {T}

Latex:
\mforall{}a,b,c:\mBbbR{}.
    ((r0  <  a)
    {}\mRightarrow{}  (c  <  r0)
    {}\mRightarrow{}  (\mforall{}x:\mBbbR{}
                (((x  =  quadratic1(a;b;c))  \mvee{}  (x  =  quadratic2(a;b;c)))  {}\mRightarrow{}  (((a  *  x\^{}2)  +  (b  *  x)  +  c)  =  r0))))



Date html generated: 2020_05_20-PM-00_35_23
Last ObjectModification: 2019_11_11-AM-11_02_47

Theory : reals


Home Index