Nuprl Lemma : r2-be-iff
∀u,v,x:ℝ^2.  (u_x_v 
⇐⇒ ((¬(d(u;v) < d(u;x))) ∧ (¬(d(u;v) < d(x;v)))) ∧ (¬(r2-left(u;x;v) ∨ r2-left(u;v;x))))
Proof
Definitions occuring in Statement : 
r2-left: r2-left(p;q;r)
, 
rv-be: a_b_c
, 
real-vec-dist: d(x;y)
, 
real-vec: ℝ^n
, 
rless: x < y
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
top: Top
, 
cand: A c∧ B
, 
stable: Stable{P}
, 
rv-be: a_b_c
, 
real-vec-sep: a ≠ b
Latex:
\mforall{}u,v,x:\mBbbR{}\^{}2.
    (u\_x\_v  \mLeftarrow{}{}\mRightarrow{}  ((\mneg{}(d(u;v)  <  d(u;x)))  \mwedge{}  (\mneg{}(d(u;v)  <  d(x;v))))  \mwedge{}  (\mneg{}(r2-left(u;x;v)  \mvee{}  r2-left(u;v;x))))
Date html generated:
2020_05_20-PM-01_02_31
Last ObjectModification:
2019_12_11-PM-00_19_03
Theory : reals
Home
Index