Nuprl Lemma : r2-plane-separation
∀a,b:ℝ^2. ∀u:{u:ℝ^2| r2-left(u;a;b)} . ∀v:{v:ℝ^2| r2-left(v;b;a)} .
  (∃x:ℝ^2 [((¬(r2-left(a;b;x) ∨ r2-left(a;x;b)))
          ∧ ((¬(d(u;v) < d(u;x))) ∧ (¬(d(u;v) < d(x;v))))
          ∧ (¬(r2-left(u;x;v) ∨ r2-left(u;v;x))))])
Proof
Definitions occuring in Statement : 
r2-left: r2-left(p;q;r)
, 
real-vec-dist: d(x;y)
, 
real-vec: ℝ^n
, 
rless: x < y
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
not: ¬A
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
false: False
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Latex:
\mforall{}a,b:\mBbbR{}\^{}2.  \mforall{}u:\{u:\mBbbR{}\^{}2|  r2-left(u;a;b)\}  .  \mforall{}v:\{v:\mBbbR{}\^{}2|  r2-left(v;b;a)\}  .
    (\mexists{}x:\mBbbR{}\^{}2  [((\mneg{}(r2-left(a;b;x)  \mvee{}  r2-left(a;x;b)))
                    \mwedge{}  ((\mneg{}(d(u;v)  <  d(u;x)))  \mwedge{}  (\mneg{}(d(u;v)  <  d(x;v))))
                    \mwedge{}  (\mneg{}(r2-left(u;x;v)  \mvee{}  r2-left(u;v;x))))])
Date html generated:
2020_05_20-PM-01_03_55
Last ObjectModification:
2019_12_11-PM-00_22_07
Theory : reals
Home
Index