Nuprl Lemma : r2-sep-or

a:ℝ^2. ∀b:{b:ℝ^2| d(a;a) < d(a;b)} . ∀c:ℝ^2.  ((d(a;a) < d(a;c)) ∨ (d(b;b) < d(b;c)))


Proof




Definitions occuring in Statement :  real-vec-dist: d(x;y) real-vec: ^n rless: x < y all: x:A. B[x] or: P ∨ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A implies:  Q false: False subtype_rel: A ⊆B prop: real-vec-sep: a ≠ b or: P ∨ Q rev_implies:  Q uimplies: supposing a iff: ⇐⇒ Q sq_stable: SqStable(P) squash: T

Latex:
\mforall{}a:\mBbbR{}\^{}2.  \mforall{}b:\{b:\mBbbR{}\^{}2|  d(a;a)  <  d(a;b)\}  .  \mforall{}c:\mBbbR{}\^{}2.    ((d(a;a)  <  d(a;c))  \mvee{}  (d(b;b)  <  d(b;c)))



Date html generated: 2020_05_20-PM-00_44_32
Last ObjectModification: 2019_12_11-AM-11_21_32

Theory : reals


Home Index