Nuprl Lemma : r2-straightedge-compass-simple1

c,d,a:ℝ^2. ∀b:{b:ℝ^2| b ≠ a ∧ c_b_d} .  (∃u:ℝ^2 [(cu=cd ∧ a_b_u ∧ (b ≠  b ≠ u))])


Proof




Definitions occuring in Statement :  rv-be: a_b_c real-vec-sep: a ≠ b rv-congruent: ab=cd real-vec: ^n all: x:A. B[x] sq_exists: x:A [B[x]] implies:  Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T and: P ∧ Q uall: [x:A]. B[x] nat: le: A ≤ B less_than': less_than'(a;b) not: ¬A implies:  Q false: False prop: exists: x:A. B[x] sq_exists: x:A [B[x]] cand: c∧ B sq_stable: SqStable(P) squash: T rv-congruent: ab=cd subtype_rel: A ⊆B real-vec-sep: a ≠ b uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q

Latex:
\mforall{}c,d,a:\mBbbR{}\^{}2.  \mforall{}b:\{b:\mBbbR{}\^{}2|  b  \mneq{}  a  \mwedge{}  c\_b\_d\}  .    (\mexists{}u:\mBbbR{}\^{}2  [(cu=cd  \mwedge{}  a\_b\_u  \mwedge{}  (b  \mneq{}  d  {}\mRightarrow{}  b  \mneq{}  u))])



Date html generated: 2020_05_20-PM-00_58_11
Last ObjectModification: 2019_12_11-PM-00_26_00

Theory : reals


Home Index