Nuprl Lemma : rabs-difference-symmetry
∀[x,y:ℝ].  (|x - y| = |y - x|)
Proof
Definitions occuring in Statement : 
rabs: |x|
, 
rsub: x - y
, 
req: x = y
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
all: ∀x:A. B[x]
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
Latex:
\mforall{}[x,y:\mBbbR{}].    (|x  -  y|  =  |y  -  x|)
Date html generated:
2020_05_20-AM-10_56_08
Last ObjectModification:
2020_01_06-PM-00_27_06
Theory : reals
Home
Index