Nuprl Lemma : rabs-difference-symmetry
∀[x,y:ℝ].  (|x - y| = |y - x|)
Proof
Definitions occuring in Statement : 
rabs: |x|, 
rsub: x - y, 
req: x = y, 
real: ℝ, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
squash: ↓T, 
prop: ℙ, 
true: True, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
all: ∀x:A. B[x], 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A
Latex:
\mforall{}[x,y:\mBbbR{}].    (|x  -  y|  =  |y  -  x|)
Date html generated:
2020_05_20-AM-10_56_08
Last ObjectModification:
2020_01_06-PM-00_27_06
Theory : reals
Home
Index