Nuprl Lemma : rabs-difference-symmetry
∀[x,y:ℝ]. (|x - y| = |y - x|)
Proof
Definitions occuring in Statement :
rabs: |x|
,
rsub: x - y
,
req: x = y
,
real: ℝ
,
uall: ∀[x:A]. B[x]
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
squash: ↓T
,
prop: ℙ
,
true: True
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
guard: {T}
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
all: ∀x:A. B[x]
,
req_int_terms: t1 ≡ t2
,
false: False
,
not: ¬A
Latex:
\mforall{}[x,y:\mBbbR{}]. (|x - y| = |y - x|)
Date html generated:
2020_05_20-AM-10_56_08
Last ObjectModification:
2020_01_06-PM-00_27_06
Theory : reals
Home
Index