Nuprl Lemma : rabs-rmul-rleq
∀[x,y,a,b:ℝ]. (|x * y| ≤ (a * b)) supposing ((|y| ≤ b) and (|x| ≤ a))
Proof
Definitions occuring in Statement :
rleq: x ≤ y
,
rabs: |x|
,
rmul: a * b
,
real: ℝ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
rev_uimplies: rev_uimplies(P;Q)
,
rge: x ≥ y
,
guard: {T}
,
rleq: x ≤ y
,
rnonneg: rnonneg(x)
,
all: ∀x:A. B[x]
,
le: A ≤ B
,
and: P ∧ Q
,
prop: ℙ
,
uiff: uiff(P;Q)
,
or: P ∨ Q
,
cand: A c∧ B
,
req_int_terms: t1 ≡ t2
,
false: False
,
implies: P
⇒ Q
,
not: ¬A
Latex:
\mforall{}[x,y,a,b:\mBbbR{}]. (|x * y| \mleq{} (a * b)) supposing ((|y| \mleq{} b) and (|x| \mleq{} a))
Date html generated:
2020_05_20-AM-10_57_56
Last ObjectModification:
2020_01_06-PM-00_26_57
Theory : reals
Home
Index