Nuprl Lemma : rabs-rneq

a,b:ℝ.  (|a| ≠ |b|  a ≠ b)


Proof




Definitions occuring in Statement :  rneq: x ≠ y rabs: |x| real: all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rneq: x ≠ y or: P ∨ Q member: t ∈ T uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q prop: guard: {T} squash: T true: True subtype_rel: A ⊆B uimplies: supposing a

Latex:
\mforall{}a,b:\mBbbR{}.    (|a|  \mneq{}  |b|  {}\mRightarrow{}  a  \mneq{}  b)



Date html generated: 2020_05_20-AM-11_03_16
Last ObjectModification: 2019_11_11-PM-09_13_28

Theory : reals


Home Index