Nuprl Lemma : range_sup_functionality2
∀I,J:{I:Interval| icompact(I)} . ∀f:{x:ℝ| x ∈ I}  ⟶ ℝ.
  ∀g:{x:ℝ| x ∈ J}  ⟶ ℝ
    (sup{f[x] | x ∈ I} = sup{g[x] | x ∈ J}) supposing 
       (((∀x:{x:ℝ| x ∈ I} . ∃y:{x:ℝ| x ∈ J} . (f[x] = g[y])) ∧ (∀x:{x:ℝ| x ∈ J} . ∃y:{x:ℝ| x ∈ I} . (f[y] = g[x]))) and 
       (∀x,y:{x:ℝ| x ∈ J} .  ((x = y) 
⇒ (g[x] = g[y])))) 
  supposing ∀x,y:{x:ℝ| x ∈ I} .  ((x = y) 
⇒ (f[x] = f[y]))
Proof
Definitions occuring in Statement : 
range_sup: sup{f[x] | x ∈ I}
, 
icompact: icompact(I)
, 
i-member: r ∈ I
, 
interval: Interval
, 
req: x = y
, 
real: ℝ
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
guard: {T}
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
Latex:
\mforall{}I,J:\{I:Interval|  icompact(I)\}  .  \mforall{}f:\{x:\mBbbR{}|  x  \mmember{}  I\}    {}\mrightarrow{}  \mBbbR{}.
    \mforall{}g:\{x:\mBbbR{}|  x  \mmember{}  J\}    {}\mrightarrow{}  \mBbbR{}
        (sup\{f[x]  |  x  \mmember{}  I\}  =  sup\{g[x]  |  x  \mmember{}  J\})  supposing 
              (((\mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  I\}  .  \mexists{}y:\{x:\mBbbR{}|  x  \mmember{}  J\}  .  (f[x]  =  g[y]))
              \mwedge{}  (\mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  J\}  .  \mexists{}y:\{x:\mBbbR{}|  x  \mmember{}  I\}  .  (f[y]  =  g[x])))  and 
              (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  J\}  .    ((x  =  y)  {}\mRightarrow{}  (g[x]  =  g[y])))) 
    supposing  \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (f[x]  =  f[y]))
Date html generated:
2020_05_20-PM-00_19_03
Last ObjectModification:
2020_01_03-PM-03_19_40
Theory : reals
Home
Index