Nuprl Lemma : rat2real-qdiv2
∀a:ℤ. ∀b:ℤ-o. (rat2real((a/b)) = (r(a)/r(b)))
Proof
Definitions occuring in Statement :
rat2real: rat2real(q)
,
rdiv: (x/y)
,
req: x = y
,
int-to-real: r(n)
,
int_nzero: ℤ-o
,
all: ∀x:A. B[x]
,
int: ℤ
,
qdiv: (r/s)
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
rat2real: rat2real(q)
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
member: t ∈ T
,
subtype_rel: A ⊆r B
Latex:
\mforall{}a:\mBbbZ{}. \mforall{}b:\mBbbZ{}\msupminus{}\msupzero{}. (rat2real((a/b)) = (r(a)/r(b)))
Date html generated:
2020_05_20-AM-11_01_27
Last ObjectModification:
2019_12_09-AM-00_44_03
Theory : reals
Home
Index