Nuprl Lemma : rat2real-qsub
∀[a,b:ℚ].  (rat2real(a - b) = (rat2real(a) - rat2real(b)))
Proof
Definitions occuring in Statement : 
rat2real: rat2real(q), 
rsub: x - y, 
req: x = y, 
uall: ∀[x:A]. B[x], 
qsub: r - s, 
rationals: ℚ
Definitions unfolded in proof : 
qsub: r - s, 
rat2real: rat2real(q), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
int-to-real: r(n), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
all: ∀x:A. B[x], 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
top: Top
Latex:
\mforall{}[a,b:\mBbbQ{}].    (rat2real(a  -  b)  =  (rat2real(a)  -  rat2real(b)))
 Date html generated: 
2020_05_20-AM-11_01_49
 Last ObjectModification: 
2019_12_09-AM-00_01_30
Theory : reals
Home
Index