Nuprl Lemma : rat2real_wf

[q:ℚ]. (rat2real(q) ∈ ℝ)


Proof




Definitions occuring in Statement :  rat2real: rat2real(q) real: uall: [x:A]. B[x] member: t ∈ T rationals:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rationals: quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q rat2real: rat2real(q) b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t) btrue: tt qeq: qeq(r;s) uimplies: supposing a callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) uiff: uiff(P;Q) sq_type: SQType(T) guard: {T} nat_plus: + subtype_rel: A ⊆B real: decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: bfalse: ff so_lambda: λ2x.t[x] so_apply: x[s] int_nzero: -o int-to-real: r(n) int-rdiv: (a)/k1 nequal: a ≠ b ∈  so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]

Latex:
\mforall{}[q:\mBbbQ{}].  (rat2real(q)  \mmember{}  \mBbbR{})



Date html generated: 2020_05_20-AM-11_01_05
Last ObjectModification: 2019_12_28-PM-08_14_41

Theory : reals


Home Index