Nuprl Lemma : rat_term_polynomial
∀r:rat_term(). let p,q = rat_term_to_ipolys(r) in r ≡ ipolynomial-term(p)/ipolynomial-term(q)
Proof
Definitions occuring in Statement : 
req_rat_term: r ≡ p/q
, 
rat_term_to_ipolys: rat_term_to_ipolys(t)
, 
rat_term: rat_term()
, 
ipolynomial-term: ipolynomial-term(p)
, 
all: ∀x:A. B[x]
, 
spread: spread def
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iPolynomial: iPolynomial()
, 
so_apply: x[s]
, 
rat_term_to_ipolys: rat_term_to_ipolys(t)
, 
rat_term_ind: rat_term_ind, 
rtermConstant: "const"
, 
rtermVar: rtermVar(var)
, 
rtermAdd: left "+" right
, 
req_rat_term: r ≡ p/q
, 
rat_term_to_real: rat_term_to_real(f;t)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
rtermSubtract: left "-" right
, 
rtermMultiply: left "*" right
, 
rtermDivide: num "/" denom
, 
rtermMinus: rtermMinus(num)
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
ipolynomial-term: ipolynomial-term(p)
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
imonomial-term: imonomial-term(m)
, 
rneq: x ≠ y
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
false: False
, 
not: ¬A
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
, 
real_term_value: real_term_value(f;t)
, 
itermAdd: left (+) right
, 
int_term_ind: int_term_ind, 
itermMultiply: left (*) right
, 
itermMinus: "-"num
, 
exists: ∃x:A. B[x]
, 
istype: istype(T)
Latex:
\mforall{}r:rat\_term().  let  p,q  =  rat\_term\_to\_ipolys(r)  in  r  \mequiv{}  ipolynomial-term(p)/ipolynomial-term(q)
Date html generated:
2020_05_20-AM-10_59_50
Last ObjectModification:
2020_01_06-PM-00_28_23
Theory : reals
Home
Index