Nuprl Lemma : rat_term_polynomial

r:rat_term(). let p,q rat_term_to_ipolys(r) in r ≡ ipolynomial-term(p)/ipolynomial-term(q)


Proof




Definitions occuring in Statement :  req_rat_term: r ≡ p/q rat_term_to_ipolys: rat_term_to_ipolys(t) rat_term: rat_term() ipolynomial-term: ipolynomial-term(p) all: x:A. B[x] spread: spread def
Definitions unfolded in proof :  uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T all: x:A. B[x] implies:  Q iPolynomial: iPolynomial() so_apply: x[s] rat_term_to_ipolys: rat_term_to_ipolys(t) rat_term_ind: rat_term_ind rtermConstant: "const" rtermVar: rtermVar(var) rtermAdd: left "+" right req_rat_term: r ≡ p/q rat_term_to_real: rat_term_to_real(f;t) and: P ∧ Q cand: c∧ B uimplies: supposing a prop: subtype_rel: A ⊆B rtermSubtract: left "-" right rtermMultiply: left "*" right rtermDivide: num "/" denom rtermMinus: rtermMinus(num) guard: {T} decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) ipolynomial-term: ipolynomial-term(p) top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] ifthenelse: if then else fi  bfalse: ff btrue: tt imonomial-term: imonomial-term(m) rneq: x ≠ y iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) false: False not: ¬A rdiv: (x/y) req_int_terms: t1 ≡ t2 real_term_value: real_term_value(f;t) itermAdd: left (+) right int_term_ind: int_term_ind itermMultiply: left (*) right itermMinus: "-"num exists: x:A. B[x] istype: istype(T)

Latex:
\mforall{}r:rat\_term().  let  p,q  =  rat\_term\_to\_ipolys(r)  in  r  \mequiv{}  ipolynomial-term(p)/ipolynomial-term(q)



Date html generated: 2020_05_20-AM-10_59_50
Last ObjectModification: 2020_01_06-PM-00_28_23

Theory : reals


Home Index