Nuprl Lemma : rationals-dense

x:ℝ. ∀y:{y:ℝx < y} .  ∃n:ℕ+. ∃m:ℤ((x < (r(m)/r(n))) ∧ ((r(m)/r(n)) < y))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rless: x < y int-to-real: r(n) real: nat_plus: + all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q set: {x:A| B[x]}  int:
Definitions unfolded in proof :  top: Top not: ¬A false: False satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) implies:  Q rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q guard: {T} rneq: x ≠ y and: P ∧ Q true: True less_than': less_than'(a;b) squash: T less_than: a < b exists: x:A. B[x] nat_plus: + uimplies: supposing a sq_exists: x:A [B[x]] rless: x < y subtype_rel: A ⊆B so_apply: x[s] prop: real: so_lambda: λ2x.t[x] uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] rational-approx: (x within 1/n) int_nzero: -o nequal: a ≠ b ∈  sq_type: SQType(T) uiff: uiff(P;Q) rge: x ≥ y rdiv: (x/y) req_int_terms: t1 ≡ t2

Latex:
\mforall{}x:\mBbbR{}.  \mforall{}y:\{y:\mBbbR{}|  x  <  y\}  .    \mexists{}n:\mBbbN{}\msupplus{}.  \mexists{}m:\mBbbZ{}.  ((x  <  (r(m)/r(n)))  \mwedge{}  ((r(m)/r(n))  <  y))



Date html generated: 2020_05_20-AM-11_08_22
Last ObjectModification: 2020_03_20-PM-01_12_09

Theory : reals


Home Index