Nuprl Lemma : rdiv-factorial-lemma1

n:ℕ((r((2 (n 1))!)/r((2 n)!)) r(((n 2) 2) ((n 2) 1)))


Proof




Definitions occuring in Statement :  rdiv: (x/y) req: y int-to-real: r(n) fact: (n)! nat: all: x:A. B[x] multiply: m add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: subtype_rel: A ⊆B nat_plus: + uiff: uiff(P;Q) subtract: m

Latex:
\mforall{}n:\mBbbN{}.  ((r((2  *  (n  +  1))!)/r((2  *  n)!))  =  r(((n  *  2)  +  2)  *  ((n  *  2)  +  1)))



Date html generated: 2020_05_20-AM-11_23_44
Last ObjectModification: 2020_01_02-PM-02_10_16

Theory : reals


Home Index