Nuprl Lemma : real-approx

[x:ℝ]. ∀[n:ℕ+].  (|(r(2 n) x) r(x n)| ≤ r(2))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rabs: |x| rsub: y rmul: b int-to-real: r(n) real: nat_plus: + uall: [x:A]. B[x] apply: a multiply: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B and: P ∧ Q uimplies: supposing a nat_plus: + iff: ⇐⇒ Q rev_implies:  Q implies:  Q decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: real: uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 rsub: y subtype_rel: A ⊆B reg-seq-add: reg-seq-add(x;y) rminus: -(x) rabs: |x| nat: int-to-real: r(n) reg-seq-mul: reg-seq-mul(x;y) rnonneg2: rnonneg2(x) int_upper: {i...} guard: {T} subtract: m sq_stable: SqStable(P) squash: T regular-int-seq: k-regular-seq(f) so_lambda: λ2x.t[x] so_apply: x[s] less_than': less_than'(a;b) absval: |i| sq_type: SQType(T) int_nzero: -o nequal: a ≠ b ∈  true: True

Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    (|(r(2  *  n)  *  x)  -  r(x  n)|  \mleq{}  r(2))



Date html generated: 2020_05_20-AM-11_03_29
Last ObjectModification: 2019_11_25-PM-00_25_12

Theory : reals


Home Index