Nuprl Lemma : real-binomial

[n:ℕ]. ∀[a,b:ℝ].  (a b^n = Σ{r(choose(n;i)) a^n b^i 0≤i≤n})


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} rnexp: x^k1 req: y rmul: b radd: b int-to-real: r(n) real: nat: uall: [x:A]. B[x] subtract: m natural_number: $n choose: choose(n;i)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] and: P ∧ Q prop: so_lambda: λ2x.t[x] le: A ≤ B less_than': less_than'(a;b) int_seg: {i..j-} lelt: i ≤ j < k subtype_rel: A ⊆B less_than: a < b squash: T decidable: Dec(P) or: P ∨ Q so_apply: x[s] int_iseg: {i...j} guard: {T} uiff: uiff(P;Q) ifthenelse: if then else fi  bor: p ∨bq btrue: tt eq_int: (i =z j) ycomb: Y choose: choose(n;i) subtract: m cand: c∧ B top: Top rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 nat_plus: + pointwise-req: x[k] y[k] for k ∈ [n,m] sq_type: SQType(T) nequal: a ≠ b ∈  assert: b bnot: ¬bb bfalse: ff rev_implies:  Q iff: ⇐⇒ Q it: unit: Unit bool: 𝔹 true: True

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b:\mBbbR{}].    (a  +  b\^{}n  =  \mSigma{}\{r(choose(n;i))  *  a\^{}n  -  i  *  b\^{}i  |  0\mleq{}i\mleq{}n\})



Date html generated: 2020_05_20-AM-11_13_35
Last ObjectModification: 2020_01_03-AM-00_41_52

Theory : reals


Home Index