Nuprl Lemma : real-closed-interval-lattice_wf

[a,b:ℝ].  real-closed-interval-lattice(a;b) ∈ GeneralBoundedDistributiveLattice supposing a ≤ b


Proof




Definitions occuring in Statement :  real-closed-interval-lattice: real-closed-interval-lattice(a;b) rleq: x ≤ y real: uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T general-bounded-distributive-lattice: GeneralBoundedDistributiveLattice
Definitions unfolded in proof :  squash: T sq_stable: SqStable(P) trans: Trans(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) equiv_rel: EquivRel(T;x,y.E[x; y]) false: False not: ¬A stable: Stable{P} rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) so_apply: x[s1;s2] or: P ∨ Q implies:  Q iff: ⇐⇒ Q cand: c∧ B so_lambda: λ2y.t[x; y] prop: and: P ∧ Q all: x:A. B[x] real-closed-interval-lattice: real-closed-interval-lattice(a;b) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] guard: {T}

Latex:
\mforall{}[a,b:\mBbbR{}].    real-closed-interval-lattice(a;b)  \mmember{}  GeneralBoundedDistributiveLattice  supposing  a  \mleq{}  b



Date html generated: 2020_05_20-AM-11_34_08
Last ObjectModification: 2020_01_16-PM-03_28_44

Theory : reals


Home Index