Nuprl Lemma : real-closed-interval-lattice_wf
∀[a,b:ℝ].  real-closed-interval-lattice(a;b) ∈ GeneralBoundedDistributiveLattice supposing a ≤ b
Proof
Definitions occuring in Statement : 
real-closed-interval-lattice: real-closed-interval-lattice(a;b), 
rleq: x ≤ y, 
real: ℝ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
general-bounded-distributive-lattice: GeneralBoundedDistributiveLattice
Definitions unfolded in proof : 
squash: ↓T, 
sq_stable: SqStable(P), 
trans: Trans(T;x,y.E[x; y]), 
sym: Sym(T;x,y.E[x; y]), 
refl: Refl(T;x,y.E[x; y]), 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
false: False, 
not: ¬A, 
stable: Stable{P}, 
rev_uimplies: rev_uimplies(P;Q), 
uiff: uiff(P;Q), 
so_apply: x[s1;s2], 
or: P ∨ Q, 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
cand: A c∧ B, 
so_lambda: λ2x y.t[x; y], 
prop: ℙ, 
and: P ∧ Q, 
all: ∀x:A. B[x], 
real-closed-interval-lattice: real-closed-interval-lattice(a;b), 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
guard: {T}
Latex:
\mforall{}[a,b:\mBbbR{}].    real-closed-interval-lattice(a;b)  \mmember{}  GeneralBoundedDistributiveLattice  supposing  a  \mleq{}  b
 Date html generated: 
2020_05_20-AM-11_34_08
 Last ObjectModification: 
2020_01_16-PM-03_28_44
Theory : reals
Home
Index