Nuprl Lemma : real-closed-interval-lattice_wf
∀[a,b:ℝ].  real-closed-interval-lattice(a;b) ∈ GeneralBoundedDistributiveLattice supposing a ≤ b
Proof
Definitions occuring in Statement : 
real-closed-interval-lattice: real-closed-interval-lattice(a;b)
, 
rleq: x ≤ y
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
general-bounded-distributive-lattice: GeneralBoundedDistributiveLattice
Definitions unfolded in proof : 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
trans: Trans(T;x,y.E[x; y])
, 
sym: Sym(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
false: False
, 
not: ¬A
, 
stable: Stable{P}
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
so_apply: x[s1;s2]
, 
or: P ∨ Q
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
cand: A c∧ B
, 
so_lambda: λ2x y.t[x; y]
, 
prop: ℙ
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
real-closed-interval-lattice: real-closed-interval-lattice(a;b)
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
Latex:
\mforall{}[a,b:\mBbbR{}].    real-closed-interval-lattice(a;b)  \mmember{}  GeneralBoundedDistributiveLattice  supposing  a  \mleq{}  b
Date html generated:
2020_05_20-AM-11_34_08
Last ObjectModification:
2020_01_16-PM-03_28_44
Theory : reals
Home
Index