Nuprl Lemma : real-det-req-matrix-det
∀n:ℕ. ∀M:ℕn ⟶ ℕn ⟶ ℝ.  (|M| = |M|)
Proof
Definitions occuring in Statement : 
real-det: |M|
, 
real-ring: real-ring()
, 
req: x = y
, 
real: ℝ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
matrix-det: |M|
Definitions unfolded in proof : 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}M:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n  {}\mrightarrow{}  \mBbbR{}.    (|M|  =  |M|)
Date html generated:
2020_05_20-PM-00_37_36
Last ObjectModification:
2019_12_28-AM-11_09_56
Theory : reals
Home
Index