Nuprl Lemma : real-ratio-bound-cases

M:ℕ+. ∀x,y:ℝ.
  ∀[a,b:{r:ℝr0 < r} ].
    ((x < y) ∧ (real-ratio-bound(M;x;y;a;b) (a/y x))) ∨ ((y < x) ∧ (real-ratio-bound(M;x;y;a;b) (b/x y))) 
    supposing (r(2)/r(M)) ≤ |x y|


Proof




Definitions occuring in Statement :  real-ratio-bound: real-ratio-bound(M;x;y;a;b) rdiv: (x/y) rleq: x ≤ y rless: x < y rabs: |x| rsub: y req: y int-to-real: r(n) real: nat_plus: + uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] or: P ∨ Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B and: P ∧ Q real-ratio-bound: real-ratio-bound(M;x;y;a;b) implies:  Q prop: rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q rless: x < y sq_exists: x:A [B[x]] nat_plus: + int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) sq_type: SQType(T) eq_int: (i =z j) ifthenelse: if then else fi  bfalse: ff btrue: tt cand: c∧ B uiff: uiff(P;Q) rge: x ≥ y rgt: x > y req_int_terms: t1 ≡ t2

Latex:
\mforall{}M:\mBbbN{}\msupplus{}.  \mforall{}x,y:\mBbbR{}.
    \mforall{}[a,b:\{r:\mBbbR{}|  r0  <  r\}  ].
        ((x  <  y)  \mwedge{}  (real-ratio-bound(M;x;y;a;b)  =  (a/y  -  x)))
        \mvee{}  ((y  <  x)  \mwedge{}  (real-ratio-bound(M;x;y;a;b)  =  (b/x  -  y))) 
        supposing  (r(2)/r(M))  \mleq{}  |x  -  y|



Date html generated: 2020_05_20-AM-11_07_19
Last ObjectModification: 2019_11_06-PM-06_28_08

Theory : reals


Home Index