Nuprl Definition : real-separation
real-separation(x.A[x];y.B[y]) ==  real-disjoint(x.A[x];y.B[y]) ∧ (∃x:ℝ. A[x]) ∧ (∃y:ℝ. B[y]) ∧ (∀r:ℝ. (A[r] ∨ B[r]))
Definitions occuring in Statement : 
real-disjoint: real-disjoint(x.A[x];y.B[y])
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
and: P ∧ Q
Definitions occuring in definition : 
real-disjoint: real-disjoint(x.A[x];y.B[y])
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
real: ℝ
, 
or: P ∨ Q
FDL editor aliases : 
real-separation
Latex:
real-separation(x.A[x];y.B[y])  ==
    real-disjoint(x.A[x];y.B[y])  \mwedge{}  (\mexists{}x:\mBbbR{}.  A[x])  \mwedge{}  (\mexists{}y:\mBbbR{}.  B[y])  \mwedge{}  (\mforall{}r:\mBbbR{}.  (A[r]  \mvee{}  B[r]))
Date html generated:
2017_10_03-AM-10_00_51
Last ObjectModification:
2017_06_30-AM-10_52_51
Theory : reals
Home
Index