Nuprl Definition : real-separation

real-separation(x.A[x];y.B[y]) ==  real-disjoint(x.A[x];y.B[y]) ∧ (∃x:ℝA[x]) ∧ (∃y:ℝB[y]) ∧ (∀r:ℝ(A[r] ∨ B[r]))



Definitions occuring in Statement :  real-disjoint: real-disjoint(x.A[x];y.B[y]) real: all: x:A. B[x] exists: x:A. B[x] or: P ∨ Q and: P ∧ Q
Definitions occuring in definition :  real-disjoint: real-disjoint(x.A[x];y.B[y]) and: P ∧ Q exists: x:A. B[x] all: x:A. B[x] real: or: P ∨ Q
FDL editor aliases :  real-separation

Latex:
real-separation(x.A[x];y.B[y])  ==
    real-disjoint(x.A[x];y.B[y])  \mwedge{}  (\mexists{}x:\mBbbR{}.  A[x])  \mwedge{}  (\mexists{}y:\mBbbR{}.  B[y])  \mwedge{}  (\mforall{}r:\mBbbR{}.  (A[r]  \mvee{}  B[r]))



Date html generated: 2017_10_03-AM-10_00_51
Last ObjectModification: 2017_06_30-AM-10_52_51

Theory : reals


Home Index