Nuprl Lemma : real-vec-acute-angle
∀n:ℕ. ∀x,y,z:ℝ^n. (r0 < x - y⋅z - y
⇐⇒ ∀x':ℝ^n. ((d(x';y) = d(x;y))
⇒ real-vec-be(n;x;y;x')
⇒ (d(z;x) < d(z;x'))))
Proof
Definitions occuring in Statement :
real-vec-dist: d(x;y)
,
dot-product: x⋅y
,
real-vec-be: real-vec-be(n;a;b;c)
,
real-vec-sub: X - Y
,
real-vec: ℝ^n
,
rless: x < y
,
req: x = y
,
int-to-real: r(n)
,
nat: ℕ
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
natural_number: $n
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
req-vec: req-vec(n;x;y)
,
real-vec-mul: a*X
,
real-vec-sub: X - Y
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
nat: ℕ
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
rev_implies: P
⇐ Q
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
real-vec: ℝ^n
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
le: A ≤ B
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
req_int_terms: t1 ≡ t2
,
false: False
,
not: ¬A
,
real-vec-be: real-vec-be(n;a;b;c)
,
exists: ∃x:A. B[x]
,
or: P ∨ Q
,
stable: Stable{P}
,
rev_uimplies: rev_uimplies(P;Q)
,
cand: A c∧ B
,
i-member: r ∈ I
,
rccint: [l, u]
,
top: Top
,
guard: {T}
,
true: True
,
less_than': less_than'(a;b)
,
squash: ↓T
,
less_than: a < b
,
rneq: x ≠ y
,
rdiv: (x/y)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
ge: i ≥ j
,
nat_plus: ℕ+
,
sq_exists: ∃x:A [B[x]]
,
rless: x < y
,
real-vec-add: X + Y
,
sq_type: SQType(T)
,
nequal: a ≠ b ∈ T
,
int_nzero: ℤ-o
,
decidable: Dec(P)
,
pi2: snd(t)
,
pi1: fst(t)
,
rtermSubtract: left "-" right
,
rtermVar: rtermVar(var)
,
rtermConstant: "const"
,
rtermDivide: num "/" denom
,
rtermMultiply: left "*" right
,
rat_term_ind: rat_term_ind,
rtermAdd: left "+" right
,
rat_term_to_real: rat_term_to_real(f;t)
Latex:
\mforall{}n:\mBbbN{}. \mforall{}x,y,z:\mBbbR{}\^{}n.
(r0 < x - y\mcdot{}z - y
\mLeftarrow{}{}\mRightarrow{} \mforall{}x':\mBbbR{}\^{}n. ((d(x';y) = d(x;y)) {}\mRightarrow{} real-vec-be(n;x;y;x') {}\mRightarrow{} (d(z;x) < d(z;x'))))
Date html generated:
2020_05_20-PM-00_49_19
Last ObjectModification:
2019_12_14-PM-03_01_28
Theory : reals
Home
Index