Nuprl Definition : real-vec-free

real-vec-free(k;L) ==  ∀a:ℕ||L|| ⟶ ℝ(a ≠ λi.r0  Σ{a i*L[i] 0≤i≤||L|| 1} ≠ λi.r0)



Definitions occuring in Statement :  real-vec-sep: a ≠ b real-vec-sum: Σ{x[k] n≤k≤m} real-vec-mul: a*X int-to-real: r(n) real: select: L[n] length: ||as|| int_seg: {i..j-} all: x:A. B[x] implies:  Q apply: a lambda: λx.A[x] function: x:A ⟶ B[x] subtract: m natural_number: $n
Definitions occuring in definition :  all: x:A. B[x] function: x:A ⟶ B[x] int_seg: {i..j-} real: implies:  Q real-vec-sum: Σ{x[k] n≤k≤m} subtract: m length: ||as|| real-vec-mul: a*X apply: a select: L[n] lambda: λx.A[x] int-to-real: r(n) natural_number: $n
FDL editor aliases :  real-vec-free

Latex:
real-vec-free(k;L)  ==    \mforall{}a:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbR{}.  (a  \mneq{}  \mlambda{}i.r0  {}\mRightarrow{}  \mSigma{}\{a  i*L[i]  |  0\mleq{}i\mleq{}||L||  -  1\}  \mneq{}  \mlambda{}i.r0)



Date html generated: 2019_10_30-AM-08_44_41
Last ObjectModification: 2019_09_18-PM-01_49_37

Theory : reals


Home Index