Nuprl Lemma : real-vec-infinity-norm-req

[n:ℕ+]. ∀[v:ℝ^n].  (||v||∞ if (n =z 1) then |v 0| else rmax(||v||∞;|v (n 1)|) fi )


Proof




Definitions occuring in Statement :  real-vec-infinity-norm: ||v||∞ real-vec: ^n rabs: |x| rmax: rmax(x;y) req: y nat_plus: + ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] apply: a subtract: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat_plus: + all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: false: False bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  subtype_rel: A ⊆B nat: less_than: a < b squash: T less_than': less_than'(a;b) true: True real-vec-infinity-norm: ||v||∞ max-metric: max-metric(n) mdist: mdist(d;x;y) rev_implies:  Q iff: ⇐⇒ Q le: A ≤ B rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 top: Top subtract: m

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[v:\mBbbR{}\^{}n].    (||v||\minfty{}  =  if  (n  =\msubz{}  1)  then  |v  0|  else  rmax(||v||\minfty{};|v  (n  -  1)|)  fi  )



Date html generated: 2020_05_20-PM-00_47_39
Last ObjectModification: 2020_01_06-PM-00_23_29

Theory : reals


Home Index