Nuprl Lemma : real-vec-norm-1-exists

[n:ℕ+]. ∃b:ℝ^n. (||b|| r1)


Proof




Definitions occuring in Statement :  real-vec-norm: ||x|| real-vec: ^n req: y int-to-real: r(n) nat_plus: + uall: [x:A]. B[x] exists: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] exists: x:A. B[x] member: t ∈ T real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B nat_plus: + real-vec-norm: ||x|| subtype_rel: A ⊆B uimplies: supposing a dot-product: x⋅y nat: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top prop: so_lambda: λ2x.t[x] so_apply: x[s] eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) less_than: a < b squash: T bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mexists{}b:\mBbbR{}\^{}n.  (||b||  =  r1)



Date html generated: 2020_05_20-PM-00_36_41
Last ObjectModification: 2019_11_10-PM-01_14_44

Theory : reals


Home Index