Nuprl Lemma : real-vec-obtuse-angle

n:ℕ. ∀x,y,z:ℝ^n.  (x y⋅y < r0 ⇐⇒ ∀x':ℝ^n. ((d(x';y) d(x;y))  real-vec-be(n;x;y;x')  (d(z;x') < d(z;x))))


Proof




Definitions occuring in Statement :  real-vec-dist: d(x;y) dot-product: x⋅y real-vec-be: real-vec-be(n;a;b;c) real-vec-sub: Y real-vec: ^n rless: x < y req: y int-to-real: r(n) nat: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] req-vec: req-vec(n;x;y) real-vec-mul: a*X real-vec-sub: Y member: t ∈ T uall: [x:A]. B[x] nat: iff: ⇐⇒ Q and: P ∧ Q implies:  Q rev_implies:  Q prop: subtype_rel: A ⊆B real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B uiff: uiff(P;Q) uimplies: supposing a req_int_terms: t1 ≡ t2 false: False not: ¬A real-vec-be: real-vec-be(n;a;b;c) exists: x:A. B[x] or: P ∨ Q stable: Stable{P} rev_uimplies: rev_uimplies(P;Q) cand: c∧ B i-member: r ∈ I rccint: [l, u] top: Top guard: {T} true: True less_than': less_than'(a;b) squash: T less_than: a < b rneq: x ≠ y rdiv: (x/y) satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  nat_plus: + sq_exists: x:A [B[x]] rless: x < y real-vec-add: Y sq_type: SQType(T) nequal: a ≠ b ∈  int_nzero: -o decidable: Dec(P) pi2: snd(t) pi1: fst(t) rtermSubtract: left "-" right rtermVar: rtermVar(var) rtermConstant: "const" rtermDivide: num "/" denom rtermMultiply: left "*" right rat_term_ind: rat_term_ind rtermAdd: left "+" right rat_term_to_real: rat_term_to_real(f;t)

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,y,z:\mBbbR{}\^{}n.
    (x  -  y\mcdot{}z  -  y  <  r0
    \mLeftarrow{}{}\mRightarrow{}  \mforall{}x':\mBbbR{}\^{}n.  ((d(x';y)  =  d(x;y))  {}\mRightarrow{}  real-vec-be(n;x;y;x')  {}\mRightarrow{}  (d(z;x')  <  d(z;x))))



Date html generated: 2020_05_20-PM-00_49_54
Last ObjectModification: 2019_12_14-PM-02_57_46

Theory : reals


Home Index