Nuprl Lemma : real-vec-right-angle

[n:ℕ]. ∀[x,y,z:ℝ^n].
  uiff(x y⋅r0;∀x':ℝ^n. ((d(x';y) d(x;y))  real-vec-be(n;x;y;x')  (d(z;x) d(z;x'))))


Proof




Definitions occuring in Statement :  real-vec-dist: d(x;y) dot-product: x⋅y real-vec-be: real-vec-be(n;a;b;c) real-vec-sub: Y real-vec: ^n req: y int-to-real: r(n) nat: uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] req-vec: req-vec(n;x;y) all: x:A. B[x] real-vec-mul: a*X real-vec-sub: Y member: t ∈ T int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B real-vec: ^n false: False implies:  Q not: ¬A uimplies: supposing a rat_term_to_real: rat_term_to_real(f;t) rtermSubtract: left "-" right rat_term_ind: rat_term_ind rtermVar: rtermVar(var) rtermMultiply: left "*" right rtermConstant: "const" pi1: fst(t) true: True pi2: snd(t) nat: uiff: uiff(P;Q) subtype_rel: A ⊆B iff: ⇐⇒ Q prop: rev_implies:  Q real-vec-be: real-vec-be(n;a;b;c) exists: x:A. B[x] or: P ∨ Q stable: Stable{P} rev_uimplies: rev_uimplies(P;Q) cand: c∧ B i-member: r ∈ I rccint: [l, u] req_int_terms: t1 ≡ t2 top: Top guard: {T} less_than': less_than'(a;b) squash: T less_than: a < b rneq: x ≠ y rdiv: (x/y) satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  nat_plus: + sq_exists: x:A [B[x]] rless: x < y real-vec-add: Y sq_type: SQType(T) nequal: a ≠ b ∈  int_nzero: -o decidable: Dec(P) rtermDivide: num "/" denom rtermAdd: left "+" right

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y,z:\mBbbR{}\^{}n].
    uiff(x  -  y\mcdot{}z  -  y  =  r0;\mforall{}x':\mBbbR{}\^{}n
                                                    ((d(x';y)  =  d(x;y))  {}\mRightarrow{}  real-vec-be(n;x;y;x')  {}\mRightarrow{}  (d(z;x)  =  d(z;x'))))



Date html generated: 2020_05_20-PM-00_48_44
Last ObjectModification: 2019_12_14-PM-03_02_33

Theory : reals


Home Index