Nuprl Lemma : real-weak-Markov
∀x,y:ℝ.  x ≠ y supposing ∀z:ℝ. ((¬(z = x)) ∨ (¬(z = y)))
Proof
Definitions occuring in Statement : 
rneq: x ≠ y, 
req: x = y, 
real: ℝ, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
not: ¬A, 
or: P ∨ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
or: P ∨ Q, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
false: False, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
req_int_terms: t1 ≡ t2, 
rev_uimplies: rev_uimplies(P;Q), 
stable: Stable{P}, 
rge: x ≥ y, 
guard: {T}
Latex:
\mforall{}x,y:\mBbbR{}.    x  \mneq{}  y  supposing  \mforall{}z:\mBbbR{}.  ((\mneg{}(z  =  x))  \mvee{}  (\mneg{}(z  =  y)))
 Date html generated: 
2020_05_20-AM-11_18_00
 Last ObjectModification: 
2020_01_03-PM-01_29_16
Theory : reals
Home
Index