Nuprl Lemma : real-weak-Markov
∀x,y:ℝ.  x ≠ y supposing ∀z:ℝ. ((¬(z = x)) ∨ (¬(z = y)))
Proof
Definitions occuring in Statement : 
rneq: x ≠ y
, 
req: x = y
, 
real: ℝ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
or: P ∨ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
rev_uimplies: rev_uimplies(P;Q)
, 
stable: Stable{P}
, 
rge: x ≥ y
, 
guard: {T}
Latex:
\mforall{}x,y:\mBbbR{}.    x  \mneq{}  y  supposing  \mforall{}z:\mBbbR{}.  ((\mneg{}(z  =  x))  \mvee{}  (\mneg{}(z  =  y)))
Date html generated:
2020_05_20-AM-11_18_00
Last ObjectModification:
2020_01_03-PM-01_29_16
Theory : reals
Home
Index