Nuprl Lemma : reg-seq-mul-regular-eventually

[x,y:ℝ].
  ∀B,b:ℕ+.
    ∀n,m:{b...}.  (|(m (reg-seq-mul(x;y) n)) (reg-seq-mul(x;y) m)| ≤ ((2 B) (n m))) 
    supposing ∀n,m:{b...}.  ((2 ((m |x n|) (n |y m|))) ≤ ((n m) ((4 B) 2)))


Proof




Definitions occuring in Statement :  reg-seq-mul: reg-seq-mul(x;y) real: absval: |i| int_upper: {i...} nat_plus: + uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] apply: a multiply: m subtract: m add: m natural_number: $n
Definitions unfolded in proof :  le: A ≤ B rev_implies:  Q iff: ⇐⇒ Q squash: T so_apply: x[s] so_lambda: λ2x.t[x] int_nzero: -o guard: {T} sq_type: SQType(T) nequal: a ≠ b ∈  true: True sq_stable: SqStable(P) nat: subtype_rel: A ⊆B prop: and: P ∧ Q top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A or: P ∨ Q decidable: Dec(P) nat_plus: + int_upper: {i...} real: uimplies: supposing a all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] reg-seq-mul: reg-seq-mul(x;y) subtract: m ge: i ≥  rev_uimplies: rev_uimplies(P;Q) regular-int-seq: k-regular-seq(f) less_than: a < b cand: c∧ B less_than': less_than'(a;b) absval: |i| uiff: uiff(P;Q)

Latex:
\mforall{}[x,y:\mBbbR{}].
    \mforall{}B,b:\mBbbN{}\msupplus{}.
        \mforall{}n,m:\{b...\}.    (|(m  *  (reg-seq-mul(x;y)  n))  -  n  *  (reg-seq-mul(x;y)  m)|  \mleq{}  ((2  *  B)  *  (n  +  m))) 
        supposing  \mforall{}n,m:\{b...\}.    ((2  *  ((m  *  |x  n|)  +  (n  *  |y  m|)))  \mleq{}  ((n  *  m)  *  ((4  *  B)  -  2)))



Date html generated: 2020_05_20-AM-10_53_08
Last ObjectModification: 2020_03_19-PM-05_00_34

Theory : reals


Home Index