Nuprl Lemma : regular-iff-all-regular-upto
∀k:ℕ+. ∀x:ℕ+ ⟶ ℤ.  (k-regular-seq(x) ⇐⇒ ∀b:ℕ+. (↑regular-upto(k;b;x)))
Proof
Definitions occuring in Statement : 
regular-upto: regular-upto(k;n;f), 
regular-int-seq: k-regular-seq(f), 
nat_plus: ℕ+, 
assert: ↑b, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
function: x:A ⟶ B[x], 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
rev_implies: P ⇐ Q, 
regular-int-seq: k-regular-seq(f), 
nat_plus: ℕ+, 
prop: ℙ, 
nat: ℕ, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than: a < b, 
squash: ↓T, 
subtract: n - m
Latex:
\mforall{}k:\mBbbN{}\msupplus{}.  \mforall{}x:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.    (k-regular-seq(x)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}b:\mBbbN{}\msupplus{}.  (\muparrow{}regular-upto(k;b;x)))
 Date html generated: 
2020_05_20-AM-11_05_12
 Last ObjectModification: 
2020_03_14-AM-09_31_45
Theory : reals
Home
Index