Nuprl Lemma : req-int

[a,b:ℤ].  uiff(r(a) r(b);a b ∈ ℤ)


Proof




Definitions occuring in Statement :  req: y int-to-real: r(n) uiff: uiff(P;Q) uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q less_than': less_than'(a;b) less_than: a < b nat_plus: + all: x:A. B[x] req: y int-to-real: r(n) top: Top subtract: m or: P ∨ Q decidable: Dec(P) not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) sq_type: SQType(T) ifthenelse: if then else fi  btrue: tt bfalse: ff

Latex:
\mforall{}[a,b:\mBbbZ{}].    uiff(r(a)  =  r(b);a  =  b)



Date html generated: 2020_05_20-AM-10_53_25
Last ObjectModification: 2020_01_06-PM-00_27_43

Theory : reals


Home Index