Nuprl Lemma : req_fake_le_antisymmetry

[x,y:ℝ].  (x y) supposing ((y ≤ x) and (x ≤ y))


Proof




Definitions occuring in Statement :  rleq: x ≤ y req: y real: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a guard: {T} implies:  Q prop:

Latex:
\mforall{}[x,y:\mBbbR{}].    (x  =  y)  supposing  ((y  \mleq{}  x)  and  (x  \mleq{}  y))



Date html generated: 2020_05_20-AM-10_57_05
Last ObjectModification: 2020_01_02-PM-02_13_43

Theory : reals


Home Index