Nuprl Lemma : rleq-iff-not-rless
∀[x,y:ℝ].  uiff(y ≤ x;¬(x < y))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y, 
rless: x < y, 
real: ℝ, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
not: ¬A
Definitions unfolded in proof : 
rless: x < y, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
sq_exists: ∃x:A [B[x]], 
real: ℝ, 
all: ∀x:A. B[x], 
le: A ≤ B, 
iff: P ⇐⇒ Q, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
nat_plus: ℕ+, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q
Latex:
\mforall{}[x,y:\mBbbR{}].    uiff(y  \mleq{}  x;\mneg{}(x  <  y))
Date html generated:
2020_05_20-AM-10_56_49
Last ObjectModification:
2020_01_09-PM-01_38_47
Theory : reals
Home
Index