Nuprl Definition : rleq2

rleq2(x;y) ==  ∀n:ℕ+. ∃N:ℕ+. ∀m:{N...}. (((-2) m) ≤ (n ((y m) m)))



Definitions occuring in Statement :  int_upper: {i...} nat_plus: + le: A ≤ B all: x:A. B[x] exists: x:A. B[x] apply: a multiply: m subtract: m minus: -n natural_number: $n
Definitions occuring in definition :  exists: x:A. B[x] nat_plus: + all: x:A. B[x] int_upper: {i...} le: A ≤ B minus: -n natural_number: $n multiply: m subtract: m apply: a
FDL editor aliases :  rleq2

Latex:
rleq2(x;y)  ==    \mforall{}n:\mBbbN{}\msupplus{}.  \mexists{}N:\mBbbN{}\msupplus{}.  \mforall{}m:\{N...\}.  (((-2)  *  m)  \mleq{}  (n  *  ((y  m)  -  x  m)))



Date html generated: 2016_05_18-AM-07_15_04
Last ObjectModification: 2015_09_23-AM-09_01_32

Theory : reals


Home Index