Nuprl Lemma : rless-cases-proof

x,y:ℝ.  ((x < y)  (∀z:ℝ((x < z) ∨ (z < y))))


Proof




Definitions occuring in Statement :  rless: x < y real: all: x:A. B[x] implies:  Q or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q sq_exists: x:A [B[x]] nat_plus: + uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a real: rless: x < y decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: sq_type: SQType(T) guard: {T} less_than: a < b squash: T uiff: uiff(P;Q)

Latex:
\mforall{}x,y:\mBbbR{}.    ((x  <  y)  {}\mRightarrow{}  (\mforall{}z:\mBbbR{}.  ((x  <  z)  \mvee{}  (z  <  y))))



Date html generated: 2020_05_20-AM-11_05_24
Last ObjectModification: 2019_11_25-PM-00_25_02

Theory : reals


Home Index