Nuprl Lemma : rless_complement
∀x,y:ℝ.  (¬(x < y) ⇐⇒ y ≤ x)
Proof
Definitions occuring in Statement : 
rleq: x ≤ y, 
rless: x < y, 
real: ℝ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
uimplies: b supposing a, 
not: ¬A, 
prop: ℙ, 
false: False, 
rev_implies: P ⇐ Q
Latex:
\mforall{}x,y:\mBbbR{}.    (\mneg{}(x  <  y)  \mLeftarrow{}{}\mRightarrow{}  y  \mleq{}  x)
 Date html generated: 
2020_05_20-AM-10_56_57
 Last ObjectModification: 
2020_01_09-PM-01_39_43
Theory : reals
Home
Index