Nuprl Lemma : rmax-rneq
∀x,y,z,w:ℝ. (rmax(x;y) ≠ rmax(z;w)
⇒ (x ≠ z ∨ y ≠ w))
Proof
Definitions occuring in Statement :
rneq: x ≠ y
,
rmax: rmax(x;y)
,
real: ℝ
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
or: P ∨ Q
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
rneq: x ≠ y
,
or: P ∨ Q
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
and: P ∧ Q
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Latex:
\mforall{}x,y,z,w:\mBbbR{}. (rmax(x;y) \mneq{} rmax(z;w) {}\mRightarrow{} (x \mneq{} z \mvee{} y \mneq{} w))
Date html generated:
2020_05_20-AM-10_58_33
Last ObjectModification:
2019_11_11-PM-09_06_45
Theory : reals
Home
Index