Nuprl Lemma : rmax_strict_ub

x,y,z:ℝ.  ((z < x) ∨ (z < y) ⇐⇒ z < rmax(x;y))


Proof




Definitions occuring in Statement :  rless: x < y rmax: rmax(x;y) real: all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q or: P ∨ Q member: t ∈ T uall: [x:A]. B[x] prop: rev_implies:  Q cand: c∧ B guard: {T} uimplies: supposing a exists: x:A. B[x] rmax: rmax(x;y) squash: T real: true: True subtype_rel: A ⊆B not: ¬A false: False sq_type: SQType(T) uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt bfalse: ff

Latex:
\mforall{}x,y,z:\mBbbR{}.    ((z  <  x)  \mvee{}  (z  <  y)  \mLeftarrow{}{}\mRightarrow{}  z  <  rmax(x;y))



Date html generated: 2020_05_20-AM-10_58_24
Last ObjectModification: 2019_11_11-PM-09_03_41

Theory : reals


Home Index