Nuprl Lemma : rmaximum-lub

n,m:ℤ. ∀x:{n..m 1-} ⟶ ℝ. ∀r:ℝ.  (∀k:{n..m 1-}. (x[k] ≤ r))  (rmaximum(n;m;i.x[i]) ≤ r) supposing n ≤ m


Proof




Definitions occuring in Statement :  rmaximum: rmaximum(n;m;k.x[k]) rleq: x ≤ y real: int_seg: {i..j-} uimplies: supposing a so_apply: x[s] le: A ≤ B all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  rmaximum: rmaximum(n;m;k.x[k]) all: x:A. B[x] uimplies: supposing a member: t ∈ T implies:  Q uall: [x:A]. B[x] nat: false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q prop: rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  rev_uimplies: rev_uimplies(P;Q) so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q rge: x ≥ y guard: {T} bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q less_than: a < b squash: T cand: c∧ B req_int_terms: t1 ≡ t2 subtype_rel: A ⊆B subtract: m less_than': less_than'(a;b) true: True

Latex:
\mforall{}n,m:\mBbbZ{}.  \mforall{}x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}r:\mBbbR{}.
    (\mforall{}k:\{n..m  +  1\msupminus{}\}.  (x[k]  \mleq{}  r))  {}\mRightarrow{}  (rmaximum(n;m;i.x[i])  \mleq{}  r)  supposing  n  \mleq{}  m



Date html generated: 2020_05_20-AM-11_14_25
Last ObjectModification: 2020_03_19-PM-05_56_48

Theory : reals


Home Index