Nuprl Lemma : rmaximum-split
∀[n,m:ℤ]. ∀[x:{n..m + 1-} ⟶ ℝ]. ∀[k:ℤ].
(rmaximum(n;m;i.x[i]) = rmax(rmaximum(n;k;i.x[i]);rmaximum(k + 1;m;i.x[i]))) supposing (k < m and (n ≤ k))
Proof
Definitions occuring in Statement :
rmaximum: rmaximum(n;m;k.x[k])
,
rmax: rmax(x;y)
,
req: x = y
,
real: ℝ
,
int_seg: {i..j-}
,
less_than: a < b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
le: A ≤ B
,
function: x:A ⟶ B[x]
,
add: n + m
,
natural_number: $n
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
rmaximum: rmaximum(n;m;k.x[k])
,
nat: ℕ
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
not: ¬A
,
implies: P
⇒ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
and: P ∧ Q
,
prop: ℙ
,
guard: {T}
,
ge: i ≥ j
,
sq_type: SQType(T)
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
le: A ≤ B
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
cand: A c∧ B
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
subtract: n - m
,
true: True
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
bfalse: ff
Latex:
\mforall{}[n,m:\mBbbZ{}]. \mforall{}[x:\{n..m + 1\msupminus{}\} {}\mrightarrow{} \mBbbR{}]. \mforall{}[k:\mBbbZ{}].
(rmaximum(n;m;i.x[i]) = rmax(rmaximum(n;k;i.x[i]);rmaximum(k + 1;m;i.x[i]))) supposing
(k < m and
(n \mleq{} k))
Date html generated:
2020_05_20-AM-11_14_11
Last ObjectModification:
2019_12_14-PM-00_56_15
Theory : reals
Home
Index