Nuprl Lemma : rmin-req2

[x,y:ℝ].  rmin(x;y) supposing x ≤ y


Proof




Definitions occuring in Statement :  rleq: x ≤ y rmin: rmin(x;y) req: y real: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) implies:  Q prop:

Latex:
\mforall{}[x,y:\mBbbR{}].    rmin(x;y)  =  x  supposing  x  \mleq{}  y



Date html generated: 2020_05_20-AM-10_58_14
Last ObjectModification: 2020_01_02-PM-02_13_28

Theory : reals


Home Index