Nuprl Lemma : rminimum-select

n,m:ℤ.  ∀x:{n..m 1-} ⟶ ℝ. ∀e:ℝ.  ((r0 < e)  (∃i:{n..m 1-}. (x[i] < (rminimum(n;m;i.x[i]) e)))) supposing n ≤ m


Proof




Definitions occuring in Statement :  rminimum: rminimum(n;m;k.x[k]) rless: x < y radd: b int-to-real: r(n) real: int_seg: {i..j-} uimplies: supposing a so_apply: x[s] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] le: A ≤ B and: P ∧ Q rminimum: rminimum(n;m;k.x[k]) nat: decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: guard: {T} ge: i ≥  sq_type: SQType(T) so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T rless: x < y sq_exists: x:A [B[x]] nat_plus: + so_lambda: λ2x.t[x] uiff: uiff(P;Q) top: Top sq_stable: SqStable(P) real: subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q subtract: m less_than': less_than'(a;b) true: True req_int_terms: t1 ≡ t2 rge: x ≥ y

Latex:
\mforall{}n,m:\mBbbZ{}.
    \mforall{}x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}e:\mBbbR{}.    ((r0  <  e)  {}\mRightarrow{}  (\mexists{}i:\{n..m  +  1\msupminus{}\}.  (x[i]  <  (rminimum(n;m;i.x[i])  +  e)))) 
    supposing  n  \mleq{}  m



Date html generated: 2020_05_20-AM-11_15_33
Last ObjectModification: 2020_01_06-PM-00_53_36

Theory : reals


Home Index