Nuprl Lemma : rmul-ac
∀[a,b,c:ℝ].  ((a * b * c) = (b * a * c))
Proof
Definitions occuring in Statement : 
req: x = y, 
rmul: a * b, 
real: ℝ, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q), 
implies: P ⇒ Q
Latex:
\mforall{}[a,b,c:\mBbbR{}].    ((a  *  b  *  c)  =  (b  *  a  *  c))
Date html generated:
2020_05_20-AM-10_53_30
Last ObjectModification:
2019_12_14-PM-00_53_50
Theory : reals
Home
Index