Nuprl Lemma : rmul-minus
∀[r:ℝ]. ∀[n:ℤ].  ((r * r(-n)) = (-(r) * r(n)))
Proof
Definitions occuring in Statement : 
req: x = y
, 
rmul: a * b
, 
rminus: -(x)
, 
int-to-real: r(n)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
minus: -n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Latex:
\mforall{}[r:\mBbbR{}].  \mforall{}[n:\mBbbZ{}].    ((r  *  r(-n))  =  (-(r)  *  r(n)))
Date html generated:
2020_05_20-AM-10_53_36
Last ObjectModification:
2020_01_02-PM-02_12_20
Theory : reals
Home
Index