Nuprl Lemma : rnexp-int

[k:ℕ]. ∀[z:ℤ].  (r(z)^k r(z^k))


Proof




Definitions occuring in Statement :  rnexp: x^k1 req: y int-to-real: r(n) exp: i^n nat: uall: [x:A]. B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] and: P ∧ Q prop: le: A ≤ B less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff uiff: uiff(P;Q) sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b subtract: m nequal: a ≠ b ∈  nat_plus: + rev_uimplies: rev_uimplies(P;Q)

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[z:\mBbbZ{}].    (r(z)\^{}k  =  r(z\^{}k))



Date html generated: 2020_05_20-AM-10_55_45
Last ObjectModification: 2019_12_14-PM-00_53_47

Theory : reals


Home Index