Nuprl Lemma : rnexp-is-positive

i:ℕ+. ∀x:ℝ.  ((r0 < |x^i|)  (r0 < |x|))


Proof




Definitions occuring in Statement :  rless: x < y rabs: |x| rnexp: x^k1 int-to-real: r(n) real: nat_plus: + all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A false: False uimplies: supposing a iff: ⇐⇒ Q prop: nat_plus: + decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] rless: x < y sq_exists: x:A [B[x]] subtype_rel: A ⊆B top: Top sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt rev_implies:  Q bfalse: ff squash: T less_than: a < b

Latex:
\mforall{}i:\mBbbN{}\msupplus{}.  \mforall{}x:\mBbbR{}.    ((r0  <  |x\^{}i|)  {}\mRightarrow{}  (r0  <  |x|))



Date html generated: 2020_05_20-AM-11_07_44
Last ObjectModification: 2019_12_14-PM-00_55_47

Theory : reals


Home Index