Nuprl Lemma : rnexp-mul

[n,m:ℕ]. ∀[x:ℝ].  (x^m^n x^m n)


Proof




Definitions occuring in Statement :  rnexp: x^k1 req: y real: nat: uall: [x:A]. B[x] multiply: m
Definitions unfolded in proof :  or: P ∨ Q decidable: Dec(P) less_than': less_than'(a;b) le: A ≤ B prop: and: P ∧ Q all: x:A. B[x] exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x] top: Top subtract: m nequal: a ≠ b ∈  assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 rev_uimplies: rev_uimplies(P;Q)

Latex:
\mforall{}[n,m:\mBbbN{}].  \mforall{}[x:\mBbbR{}].    (x\^{}m\^{}n  =  x\^{}m  *  n)



Date html generated: 2020_05_20-AM-10_59_03
Last ObjectModification: 2019_12_28-AM-11_03_13

Theory : reals


Home Index