Nuprl Lemma : rnexp-mul
∀[n,m:ℕ]. ∀[x:ℝ]. (x^m^n = x^m * n)
Proof
Definitions occuring in Statement :
rnexp: x^k1
,
req: x = y
,
real: ℝ
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
multiply: n * m
Definitions unfolded in proof :
or: P ∨ Q
,
decidable: Dec(P)
,
less_than': less_than'(a;b)
,
le: A ≤ B
,
prop: ℙ
,
and: P ∧ Q
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
not: ¬A
,
uimplies: b supposing a
,
ge: i ≥ j
,
false: False
,
implies: P
⇒ Q
,
nat: ℕ
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
top: Top
,
subtract: n - m
,
nequal: a ≠ b ∈ T
,
assert: ↑b
,
bnot: ¬bb
,
guard: {T}
,
sq_type: SQType(T)
,
bfalse: ff
,
ifthenelse: if b then t else f fi
,
uiff: uiff(P;Q)
,
btrue: tt
,
it: ⋅
,
unit: Unit
,
bool: 𝔹
,
rev_uimplies: rev_uimplies(P;Q)
Latex:
\mforall{}[n,m:\mBbbN{}]. \mforall{}[x:\mBbbR{}]. (x\^{}m\^{}n = x\^{}m * n)
Date html generated:
2020_05_20-AM-10_59_03
Last ObjectModification:
2019_12_28-AM-11_03_13
Theory : reals
Home
Index