Nuprl Lemma : rnexp-one
∀n:ℕ. (r1^n = r1)
Proof
Definitions occuring in Statement : 
rnexp: x^k1, 
req: x = y, 
int-to-real: r(n), 
nat: ℕ, 
all: ∀x:A. B[x], 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
prop: ℙ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
decidable: Dec(P), 
or: P ∨ Q, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Latex:
\mforall{}n:\mBbbN{}.  (r1\^{}n  =  r1)
Date html generated:
2020_05_20-AM-10_58_53
Last ObjectModification:
2020_01_02-PM-02_13_04
Theory : reals
Home
Index