Nuprl Lemma : rnexp-one

n:ℕ(r1^n r1)


Proof




Definitions occuring in Statement :  rnexp: x^k1 req: y int-to-real: r(n) nat: all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q prop: le: A ≤ B less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q

Latex:
\mforall{}n:\mBbbN{}.  (r1\^{}n  =  r1)



Date html generated: 2020_05_20-AM-10_58_53
Last ObjectModification: 2020_01_02-PM-02_13_04

Theory : reals


Home Index