Nuprl Lemma : rnexp_functionality
∀[n:ℕ]. ∀[x,y:ℝ]. x^n = y^n supposing x = y
Proof
Definitions occuring in Statement :
rnexp: x^k1
,
req: x = y
,
real: ℝ
,
nat: ℕ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
all: ∀x:A. B[x]
,
and: P ∧ Q
,
prop: ℙ
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
decidable: Dec(P)
,
or: P ∨ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
rev_uimplies: rev_uimplies(P;Q)
,
nequal: a ≠ b ∈ T
,
stable: Stable{P}
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[x,y:\mBbbR{}]. x\^{}n = y\^{}n supposing x = y
Date html generated:
2020_05_20-AM-10_58_43
Last ObjectModification:
2020_01_06-PM-00_45_06
Theory : reals
Home
Index