Nuprl Lemma : rnonneg-radd
∀x,y:ℝ.  (rnonneg(x) ⇒ rnonneg(y) ⇒ rnonneg(x + y))
Proof
Definitions occuring in Statement : 
rnonneg: rnonneg(x), 
radd: a + b, 
real: ℝ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
radd: a + b, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
nat_plus: ℕ+, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
prop: ℙ, 
false: False, 
subtype_rel: A ⊆r B, 
length: ||as||, 
list_ind: list_ind, 
cons: [a / b], 
nil: [], 
it: ⋅, 
real: ℝ, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
squash: ↓T, 
true: True, 
guard: {T}, 
rnonneg2: rnonneg2(x), 
int_upper: {i...}, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
ge: i ≥ j , 
le: A ≤ B
Latex:
\mforall{}x,y:\mBbbR{}.    (rnonneg(x)  {}\mRightarrow{}  rnonneg(y)  {}\mRightarrow{}  rnonneg(x  +  y))
Date html generated:
2020_05_20-AM-10_56_17
Last ObjectModification:
2020_03_20-PM-00_21_28
Theory : reals
Home
Index