Nuprl Lemma : rnonneg-radd

x,y:ℝ.  (rnonneg(x)  rnonneg(y)  rnonneg(x y))


Proof




Definitions occuring in Statement :  rnonneg: rnonneg(x) radd: b real: all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q radd: b member: t ∈ T uall: [x:A]. B[x] nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: false: False subtype_rel: A ⊆B length: ||as|| list_ind: list_ind cons: [a b] nil: [] it: real: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q squash: T true: True guard: {T} rnonneg2: rnonneg2(x) int_upper: {i...} uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) ge: i ≥  le: A ≤ B

Latex:
\mforall{}x,y:\mBbbR{}.    (rnonneg(x)  {}\mRightarrow{}  rnonneg(y)  {}\mRightarrow{}  rnonneg(x  +  y))



Date html generated: 2020_05_20-AM-10_56_17
Last ObjectModification: 2020_03_20-PM-00_21_28

Theory : reals


Home Index